HETEROSIS STUDIES FOR YIELD AND ITS COMPONENTS IN BREAD WHEAT (Triticum aestivum L.) OVER ENVIRONMENTS

*SHAH SIDDHI AND PATEL, J. B.

DEPARTMENT OF GENETICS AND PLANT BREEDING COLLEGE OF AGRICULTURE JUNAGADH AGRILCULTURAL UNIVERSITY JUNAGADH – 362 001, GUJARAT, INDIA

*EMAIL: shahsiddhi162@gmail.com

ABSTRACT

A set of diallel crosses involving 9 parents was made to measure the extent of heterosis over better parent and standard heterosis for yield and yield contributing characters under three different environments. The analysis of variance for genotypes, parents and hybrids indicated the existence of considerable amount of genetic variability amongst genotypes, parents and hybrids for seed yield per plant and most of the characters under study. The comparison of parents vs. hybrids across the environments, in general, revealed the existence of heterosis. The interaction of genotypes with the environments indicates the non-linear response of the genotypes to the change in the environment. No specific consistency was observed with regards to heterosis for grain yield and yield component in different crosses. On pooled basis, four hybrids over better parent and one hybrid over standard check variety exhibited significant and positive heterosis. NW 5013 × BW 5872 in E_1 , PHSC 5 × GW 2010-287, DBW 90 × BW 5872 and NW 5013 × QLD 65 in E_2 , NW 5013 × QLD 65, DBW 90 × GW 2010-287, PHSC 5 × GW 2010-287 and DBW 90 × BW 5872 in E_3 and PHSC 5 × GW 2010-287 in pooled results were the best significant and positive cross combinations with respect to standard heterosis for grain yield per plant.

KEY WORDS: Bread wheat, Hetreobeltiosis, Standard heterosis

INTRODUCTION

Wheat (*Triticum spp.*) is usually accorded a premier place among the cereals because of the vast acreage devoted to its cultivation, its high nutritive value and its association with some of the earliest and most important civilization of the world. Wheat is one of the most important staple food crops of the world, feeding about 40 per cent of the world population and providing 20 per cent of total food calories and protein in human nutrition (Gupta *et al.*, 2008). Wheat is a major contribute to the

food security system in India as well, occupying nearly area 30.23 million hectare during 2015-16, producing 93.50 million tonnes of wheat with the productivity of 3093 kg/ha (Anon., 2016a). State wise analysis indicated that Uttar Pradesh has maximum area and production under wheat followed by Punjab and Madhya Pradesh. In Gujarat, during 2015-16, wheat is grown in about 0.85 million ha with total production of 2.48 million tonnes and a productivity of 2919 kg/ha (Anon., 2016b).

ISSN: 2277-9663

The magnitude of heterosis is associated with heterozygosity, because the dominance variance is associated with heterozygosity. The commercial exploitation of heterosis in wheat has limited application because of practical difficulties of hybrid seed production in sufficient quantity. However, the discovery of male sterility and genes which restore fertility (Wilson and Ross, 1962; Schmidt et al., 1970) and the use of chemical hybridizing agents (CHAS) which act as gametocides (Borghi et al., 1988; Morgan et al., 1989) have encouraged many workers to examine first generation progeny yield in wheat. A good progress have been archived in the development of hybrid wheat varieties and several varieties are under testing hence, the knowledge of heterosis would help in determination of parents which produce the best cross combinations. The nature and magnitude of heterosis will also help in identifying superior cross combinations that may produce desirable transgressive segregants in the advanced generations.

MATERIALS AND METHODS

experimental The comprised of nine parents (NW 5013, DBW 90, PHSC 5, GW 2010-287, BW 5872, QLD 65, QLD 46, RAJ 4238 and GW 496), their thirty-six F₁ hybrids and one standard check variety GW 366 were evaluated in three environments [Early October), timely (15th November) and late sowing (5th December)] designated as environment I (E₁), environment II (E₂) and environment III (E₃), respectively, in randomized block design with three rabi replications during 2016-17 Sagadividi Farm, Department of Seed Technology, Science and College of Junagadh Agricultural Agriculture, University, Junagadh. Five competitive plants per genotype in each replication in each environment were selected randomly for recording observations on different

characters viz., plant height (cm), number of effective tillers per plant, length of main spike (cm), peduncle length of main spike (cm), number of spikelets per main spike, number of grains per main spike, grain weight per main spike (g), 1000 grain weight (g), grain yield per plant (g), biological yield per plant (g) and harvest index (%), while observations on days to heading, grain filling period and days to maturity were recorded on plot basis. The mean of each plot was used for statistical analysis. Analysis of variance for all the characters in each environment was done as suggested by Panse and Sukhatme (1985). standard heterosis (SH%) heterobeltiosis (HB%) were estimated as deviation of F_1 value from the better-parent and standard heterosis values as suggested by Fonseca and Patterson (1968) and Meredith and Bridge (1972), respectively.

ISSN: 2277-9663

RESULTS AND DISCUSSION

Analysis of variance for individual environment as well as pooled over environments was carried out to test the difference among parents and hybrids for 14 different quantitative characters. The data presented in Table 1 indicated that mean sum of squares due to genotypes were significant for all the traits in all the environments, except for days to maturity, peduncle length of main spike and number of spikelets per main spike in environment I (E_1) ; for number of effective tillers plant, length of main spike, peduncle length of main spike, number of grains per main spike, grain weight per main spike and biological yield per plant in environment II (E₂); and for peduncle length of main spike and number of spikelets per main spike in environment III (E₃). Further, partitioning of the genotypic mean sum of squares into parents and hybrids evinced that mean sum of squares due to parents were significant for all the traits in all the environments, except for days to maturity, number of

effective tillers per plant, peduncle length of main spike, number of spikelets per main spike and number of grains per main spike in E₁; for days to heading, grain filling period, plant height, number of effective tillers per plant, length of main spike, peduncle length of main spike, number of spikelets per main spike, number of grains per main spike, grain weight per main spike, biological yield per plant and harvest index in E2; and for grain filling period, plant height, peduncle length of main spike and number of spikelets per main spike in E₃. Mean sum of squares due to hybrids were significant for all the traits in all the environments, except for days to maturity, peduncle length of main spike and number of spikelets per main spike in E₁; for days to heading, number of effective tillers per plant, length of main spike, peduncle length of main spike, number of grains per main spike, grain weight per main spike and biological yield per plant in E2; and for number of spikelets per main spike in E₃. These results indicated the existence of considerable amount of genetic variability amongst genotypes, parents and hybrids for seed yield per plant and most of the characters under study. Similarly, mean sum of squares due to parents vs. hybrids were significant for days to heading and 1000 grain weight in all the three environments, while days to maturity, grain yield per plant, biological yield per plant and harvest index in E₃; for plant height and length of main spike in E₂ and E₃; and for number of effective tillers per plant and grain weight per main spike in E₁ and E₂ were found significant, indicated that the performance of parents was different from that of crosses. thereby, suggesting the presence of mean heterosis for all these characters.

Pooled analysis of variance over environments (Table 2) exhibited significant differences among genotypes, parents and hybrids for all the characters, except number

of spikelets per main spike and number of grains per main spike for parents, which revealed the influence of environment on the expression of these characters and also the wide diversity among the parents. The comparison of parents vs. hybrids was found significant for all the characters, except for grain filling period, peduncle length of main spike, number of spikelets per main spike, number of grains per main spike and harvest index, which, in general, revealed the existence of heterosis. The interaction of genotypes with the environments was significant for all the characters, except peduncle length of main spike and number of spikelets per main spike, indicates the non-linear response of the genotypes to the change in the environment. This is in compliance with the general belief that the genotypes x environment interactions are common in crop plant species (Allard and Bradshaw, 1964). Sprague and Federer (1951) suggested that the biasness caused by genotype x environment interaction in the estimates of genetic parameters is of unknown magnitude and direction and it may not be same for each parameter. The parents x environments interaction was significant for days to heading, grain weight per main spike, 1000 grain weight, grain yield per plant, biological yield per plant and harvest index, which indicated that the performance of parents was not consistent over environments for these traits. The interactions of hybrids with the environments were significant for all the characters, except peduncle length of main spike and number of spikelets per main spike, suggesting that hybrids interacted significantly with different environments for all the traits, except for peduncle length of main spike and number of spikelets per main spike. Parents vs. hybrids x environments interaction were found significant for plant height, length of main spike, grain yield per plant and harvest index, indicates substantial

ISSN: 2277-9663

amount of hybrid vigour in the crosses for these traits and the crosses performed differentially in different environments.

respect to heterobeltiosis With recorded for different cross combinations for grain yield per plant, it was observed that DBW 90 \times GW 496 (24.30 %) in E₁ and DBW 90 × GW 2010-287 (35.96 %) and PHSC $5 \times GW \ 2010-287 \ (17.61 \ \%) \ in \ E_2$ were the best significant and positive heterobeltiotic cross combinations for grain yield per plant, while total of 10 and 4 cross combinations exhibited significant and positive heterobeltiosis for grain yield per plant in E₃ and pooled over environments, respectively, of which the best three cross combinations were DBW 90 × BW 5872 (70.87 %), Raj $4238 \times GW 496 (37.10 \%)$ and BW $5872 \times QLD 65 (35.76 \%)$ in E₃; and DBW 90 × GW 2010-287 (25.48 %), DBW 90 × BW 5872 (24.41 %) and GW 2010-287 × BW 5872 (20.22 %) in pooled environments (Table 4). heterobeltiosis for grain yield per plant ranged in between -31.30 per cent (PHSC 5 \times Raj 4238) to 24.30 per cent (DBW 90 \times GW 496) in E₁, -36.03 per cent (NW 5013 \times GW 496) to 35.96 per cent (DBW $90 \times GW$ 2010-287) in E₂, -21.75 per cent (NW 5013 \times GW 2010-287) to 70.87 per cent (DBW $90 \times BW$ 5872) in E₃ and -23.72 per cent (PHSC 5 \times Raj 4238) to 25.48 per cent (DBW 90 × GW 2010-287) in pooled over environments (Table 3).

The overall performance of hybrids over three environments for grain yield per plant indicated that four cross combinations showed significant positive heterosis over better parent. The top ranked cross combination across the environments with respect to *per se* performance PHSC $5 \times GW$ 2010-287 noted the significant and desirable heterobeltiosis in E₂ and E₃, but it had non-significant but desirable heterobeltiosis in pooled over environments. The highest and significant heterobeltosis of

25.48 per cent across the environments for grain yield per plant was recorded by the hybrid DBW 90 × GW 2010-287. This hybrid also exhibited significant heterosis over better parent in E₂ and E₃ environment non-significant, but desirable heterobeltiosis in E₁. The second most heterotic hybrid for hrain yield per plant over better parent [DBW 90 × BW 5872 (24.41 %)] also noted significant heterosis over better parent in E₃ environment and non-significant, but desirable heterobeltiosis in E₁ and E₂. The third ranked hybrid GW 2010-287 × BW 5872 manifested significant and positive heterobeltiosis (20.22 %) noted non-significant, but positive heterobeltiosis in all three individual environments. On pooled basis, one hybrid each for days to maturity and length of main spike registered significant heterobeltosis in desired direction, while for rest of the traits studied, none of the hybrid manifested significant heterobeltiosis. desirable In individual environment as well as on pooled basis, it was observed that majority of hybrids exhibited low heterobeltosis for grain yield per plant as well as for important yield contributing characters. The results are in accordance with the results reported by Bilgin et al. (2011), Yao et al. (2011), Lal et al. (2013), Kalhoro et al. (2015) and Baloch et al. (2016) in wheat.

ISSN: 2277-9663

With respect to standard heterosis, NW 5013 \times BW 5872 (22.14 %) in E₁, PHSC 5 \times GW 2010-287 (24.31 %), DBW 90 \times BW 5872 (19.38 %) and NW 5013 \times QLD 65 (16.27 %) in E₂, NW 5013 \times QLD 65 (20.18 %), DBW 90 \times GW 2010-287 (20.18 %), PHSC 5 \times GW 2010-287 (17.96 %) and DBW 90 \times BW 5872 (16.95 %) in E₃ and PHSC 5 \times GW 2010-287 (18.00 %) in pooled results were the best significant and positive cross combinations for grain yield per plant (Table 4). The standard heterosis for grain yield per plant ranged in between -18.22 per cent (QLD 46 \times Raj

4238) to 22.14 per cent (NW 5013 \times BW 5872) in E₁, -34.64 per cent (NW 5013 \times GW 496) to 24.31 per cent (PHSC 5 \times GW 2010-287) in E₂, -27.13 per cent (PHSC 5 \times GW 496) to 20.18 per cent (DBW 90 \times GW 2010-287) in E₃ and -20.19 per cent (PHSC 5 \times Raj 4238) to 18.00 per cent (PHSC 5 \times GW 2010-287) in pooled over environments (Table 3).

The top ranked cross combination across the environments with respect to per se performance PHSC 5 × GW 2010-287 noted the significant and desirable standard heterosis in E2, E3 and pooled over environments, but it manifested nonsignificant and desirable standard heterosis in E₁. On pooled basis, two cross combinations each for days to heading and days to maturity and one cross combination for 1000 grain weight registered significant standard heterosis in desired direction, while for rest of the traits studied, none of the cross combination manifested significant desirable standard heterosis. In individual environment as well as on pooled basis, it was observed that majority of hybrids exhibited low to moderate standard heterosis for grain yield per plant as well as for important yield contributing characters. As observed in the present study, Bilgin et al. (2011), Patil et al. (2011), Singh et al. (2012), Desale and Mehta (2013), Barot et al. (2014), Kalhoro et al. (2015) and Baloch et al. (2016) also reported the presence of considerable heterosis for grain yield per plant and some of the important yield components in bread wheat.

From commercial cultivation point of view, the superiority of new hybrid should be judged by comparing their performance with the best cultivated variety/hybrid. Variety GW 366 released for general cultivation in Gujarat was, therefore, used as the standard check in order to obtain information regarding superiority of new hybrids. The top ten cross combinations

across the environments with respect to per se performance for grain yield per plant are listed in Table 5 along with their values of heterobeltosis, standard heterosis, sca effects as well as component traits showing significant as well as significant, but desirable heterosis over better parent and standard check variety GW 366. Out of 36 cross combinations tested, only 1 cross combination PHSC 5 × GW 2010-287 found superior then GW 366 in respect of grain yield per plant, as it manifested significant standard heterosis across the environments for grain yield per plant along with significant sca effect. However, this cross combination does not manifested significant standard heterosis in desired direction for any of the yield components, but noted the desirable heterosis for days to heading, days to maturity, length of main spike, peduncle length of main spike, number of spikelets per main spike, number of gains per main spike, grain weight per main spike, 1000 grain weight, biological yield per plant and harvest index. As discussed earlier, this cross combination also noted the significant and desirable standard heterosis in E₂ and E₃ environments and non-significant desirable standard heterosis in E₁ for grain yield per plant. This cross combination also exhibited significant and desirable standard heterosis for number of effective tillers per plant, length of main spike and grain weight per main spike in E₁, for days to heading in E₂ and for days to maturity and harvest index in E₃. The data given in Table 5 also revealed that cross combinations GW 2010- $287 \times QLD$ 65 and GW 2010-287 \times BW 5872 manifested significant the desirable heterosis over standard check GW 366 for days to maturity and 1000 grain weight, respectively. However, all the ten hybrids manifested desirable but nonsignificant standard heterosis for many of the yield components.

ISSN: 2277-9663

CONCLUSION

From the results and discussion, it concluded that no specific can consistency was observed with regards to heterosis for grain yield and yield component in different crosses in bread wheat. DBW $90 \times GW 496 (24.30 \%)$ in E₁ and DBW 90 × GW 2010-287 (35.96 %) and PHSC 5 × GW 2010-287 (17.61 %) in E₂ were the best significant and positive heterobeltiotic cross combinations for grain yield per plant, while total of 10 and 4 cross combinations exhibited significant and positive heterobeltiosis for grain yield per plant in E₃ and pooled over environments, of which the best three cross combinations were DBW 90 × BW 5872 (70.87 %), Raj $4238 \times GW$ 496 (37.10 %) and BW 5872 \times QLD 65 (35.76 %) in E₃; and DBW 90 \times GW 2010-287 (25.48 %), DBW 90 × BW 5872 (24.41 %) and GW 2010-287 \times BW (20.22)5872 %) in pooled environments. With respect to standard heterosis, NW 5013 × BW 5872 (22.14 %) in E_1 , PHSC 5 × GW 2010-287 (24.31 %), DBW 90 × BW 5872 (19.38 %) and NW $5013 \times QLD 65 (16.27 \%)$ in E₂, NW 5013 \times OLD 65 (20.18 %), DBW 90 \times GW 2010-287 (20.18 %), PHSC 5 × GW 2010-287 (17.96 %) and DBW 90 × BW 5872 (16.95 %) in E_3 and PHSC 5 × GW 2010-287 (18.00 %) in pooled results were the best significant and positive cross combinations for grain yield per plant. Overall, PHSC 5 × GW 2010-287 noted the significant and desirable standard heterosis in E2, E3 and pooled over environments, but it manifested non-significant and desirable standard heterosis in E₁. Therefore, this cross could be exploited further for yield advancement in bread wheat.

REFERENCES

Allard, R. W. and Bradshaw, A. D. (1964). Implications of genotype x environment interactions in applied

plant breeding. *Crop Sci.*, **4**(5): 503-508.

ISSN: 2277-9663

- Anonymous. (2016a). Annual Report 2016-17. Department of Agriculture and Cooperation and Farmers Welfare, Ministry of Agriculture & Farmers Welfare Government of India Krishi Bhawan, New Delhi, p. 3. (http://agricoop.nic .in/sites /default/files /Annual_rpt_201617_E. pdf) Accessed on February 5, 2018.
- Anonymous. (2016b). Crop-wise fourth advance estimate of area, production and yield of food grains, oilseeds and other crops for 2015-16 of Gujarat State. (https://dag. gujarat.gov.in/ Portal/News/474_12_4th-Adv-ESt-2015-16.pdf) Accessed on February 5, 2018.
- Baloch, M.; Baloch, A. W.; Siyal, N. A.; Baloch, S. N.; Soomro, A. A.; Baloch, S. K. and Gandhi, N. (2016). Heterosis analysis in F₁ hybrids of bread wheat. *Sindh Univ. Res. J.*, **48**(2): 261-264.
- Barot, H. G.; Patel, M. S.; Sheikh, W.A.; Patel, L. P. and Allam, C. R. (2014). Heterosis and combining ability analysis for yield and its component traits in wheat [*Triticum aestivum* (L.)]. *Electro. J. Pl. Breed.*, **5**(3): 350-359.
- Bilgin, O.; Balkan, A.; Korkut, K. Z. and Baser, I. 2011). Heterotic and heterobelthiotic potentials of bread wheat (*Triticum aestivum* L.) hybrids for yield and yield components. *J. Tekirdag Agril. Faculty*, **8**(2): 133-141.
- Borghi, B.; Perenzin, M. and Nash, R. J. (1988). Agronomic and qualitative characteristic of ten bread wheat hybrids produced using a chemical hybridizing agent. *Euphytica*, **39**(2): 185-194.

- Desale, C. S. and Mehta, D. R. (2013). Heterosis and combining ability analysis for grain yield and quality traits in bread wheat (*Triticum aestivum* L.). *Electro. J. Pl. Breed.*, **4**(3): 1205-1213.
- Fonseca, S. and Patterson, F. L. (1968). Hybrid vigour in seven parental diallel cross in common winter wheat (*Triticum aestivum L.*). *Crop Sci.* **8**(1): 85-88.
- Gupta, P. K.; Mir, R. R.; Mohan, A. and Kumar, J. (2008). Wheat genomics present status and future prospects, *Int. J. Pl. Genomics*, 2008: 1-36 pages (Article ID: 896451.
- Kalhoro, F. A.; Rajpar, A. A.; Kalhoro, S. A.; Mahar, A.; Ali, A.; Otho, S. A.; Soomro, R. N.; Ali, F. and Baloch, Z. A. (2015). Heterosis and combing ability in F₁ population of hexaploid wheat (*Triticum aestivum* L.). *American J. Plant Sci.*, **6**(7): 1011-1026.
- Lal, C.; Kumar, V. and Maloo, S. R. (2013). Heterosis and inbreeding depression for some quantitative and heat tolerance characters in bread wheat (*Triticum aestivum* L.). *J. Wheat Res.*, **5**(2): 52-55.
- Meredith, W. R. and Bridge, R. R. (1972). Heterosis and gene action in cotton (*G. hirsutum* L.). *Crop Sci.*, **12**(3): 304 -310.
- Morgan, C. L.; Austin, R. B.; Ford, M. A.; Bingham, J.; Angus, W. J. and Chowdhury, S. (1989). An evaluation of F₁ hybrids winter wheat produced using a chemical hybridizing agent. *J. Agric. Sci.*, **112**(2): 143-149.
- Panse, V. G. and Sukhatme, P. V. (1985). Statistical Methods for Agricultural

Workers. Indian Council of Agricultural Research, New Delhi. p. 328.

ISSN: 2277-9663

- Patil, L. C.; Hanchinal, R. R.; Lohithaswa, H. C.; Nadaf, H. L.; Kalappanavar, I. K. and Megeri, S. N. (2011). Heterosis studies in interspecific hybridization [*Triticum dicoccum* (Schran) Schulb x *Triticum durum* Desf] of tetraploid wheat. *Karnataka J. Agric. Sci.*, **24**(3): 387-389.
- Schmidt, J. W.; Johnson, V. A.; Morris, M. R. and Mattern, P. J. (1970). Cytoplasmic male sterility and fertility restoration. *Seiken Ziho*, **22**: 113-119.
- Singh, V.; Krishna, R.; Singh, S. and Vikram, P. (2012). Combining ability and heterosis analysis for yield traits in bread wheat (*Triticum aestivum*). *Int. J. Agril. Sci.*, **82**(11): 916-921.
- Sprague, G. F. and Federer, W. T. (1951). A comparison of variance components in corn yield traits: II. Error, year × variety, location × variety and variety components. *Agron. J.*, **43**(11): 535-541.
- Wilson, J. A. and Ross, W. M. (1962). Male sterility interaction of the *Triticum aestivum* nucleus and *Triticum timopheevi* cytoplasm. *Wheat Information Service*, **14:** 29-30.
- Yao, J. B.; Ma, H. X.; Ren, L. J.; Zhang, P. P.; Yang, X. M.; Yao, G. C.; Zhang, P. and Zhou, M. P. (2011). Genetic analysis of plant height and its components in diallel crosses of bread wheat (*Triticum aestivum L.*). *Aust. J. Crop Sci.*, **5**(11): 1408-1418.

Table 1: Analysis of variance for different characters in individual environments in Wheat

Characters	Env.	Replications	Genotypes	Parents	E c (35)	Parent vs	Error (QQ)
	EIIV.	(2)	(44)	(8)	$F_1s(35)$	$F_{1}s(1)$	Error (88)
Days to heading	E_1	8.49	58.88**	55.14**	59.93**	52.26**	3.79
	E_2	32.81**	19.48**	10.62	22.02	1.45**	5.8
	E_3	33.21**	59.61**	74.58**	57.18**	24.92*	5.65
Days to maturity	E_1	84.69**	14.63	17.83	14.3	0.27	12.07
	E_2	27.34	45.34**	59.81**	42.98**	12.15	17.46
	E_3	4.59	28.16**	21.17**	28.47**	73.34**	5.43
Grain filling	E_1	125.98**	20.85**	22.45*	21.06**	0.82	10.14
_	E_2	46.02	67.82**	44.79	74.88**	5.2	26.87
	E_3	24.22	61.42**	17.14	72.82**	16.02	10.08
Plant height (cm)	E_1	131.66**	56.52**	38.97**	62.14**	0.0002	13.92
	E_2	2.24	126.95**	23.89	120.25**	1186.07**	17.93
	E_3	132.37**	82.92**	25.84	88.85**	332.29**	21.39
Number of effective	E_1	1.29	1.59**	0.81	1.69**	4.18**	0.47
tiilers/plant	E_2	1.70	0.86	0.57	0.79	5.58*	1.17
•	E_3	3.71**	2.90**	1.92**	3.21**	0.003	0.32
Length of main spike	E_1	4.40**	4.13**	3.59**	4.37**	0.1	0.59
(cm)	E_2	0.14	1.43	1.71	1.11	10.42*	1.55
	E_3	8.22**	3.41**	3.23**	3.29**	9.23**	0.67
Peduncle length of	E_1	83.28**	13.08	9.01	14.16	7.89	9.69
main spike	E_2	91.12**	12.31	23.09	9.01	41.61	13.25
•	E_3	118.01**	13.07	8.84	14.40*	0.35	8.9
Number of spikelets/	E_1	23.87**	2.04	1.87	2.12	0.76	1.66
main spike	E_2	46.47**	8.90**	5.2	9.94**	2.31	4.91
_	E_3	18.25**	2.47	2.40	2.47	3.02	2.32
Number of	E_1	42.99*	29.39**	13.16	32.87**	37.76	13.1
grains/main spike	E_2	52.27	17.33	7.89	19.95	1.49	21.29
	E_3	50.84	58.49**	58.38**	58.99**	42.00	16.76
Grain weight/main	E_1	0.03	0.09**	0.10**	0.08**	0.36**	0.02
spike (g)	E_2	0.16*	0.18	0.09	0.2	0.17**	0.05
	E_3	0.06	0.13**	0.11**	0.13**	0.02	0.04
1000-grain weight	E_1	8.19*	38.72**	40.24**	35.21**	149.31**	2.46
	E_2	52.37**	48.72**	31.81**	51.25**	95.31**	2.84
	E_3	5.38	32.41**	17.42**	33.75**	105.58**	2.72
Grain yield/plant (g)	E_1	0.65	6.79**	6.08*	7.14**	0.38	2.47
	E_2	5.96	15.34**	11.32**	16.63**	2.6	3.22
	E_3	18.18**	17.96**	13.35**	16.21**	115.93**	2.91
Biological	E_1	115.88**	81.86**	68.55**	87.23**	0.39	10.71
yield/plant (g)	E_2	12.96	16.18	16.19	15.77	30.35	25.44
	E_3	401.94**	64.07**	88.60**	56.80**	122.30**	16.58
Harvest index (%)	E_1	131.53*	193.60**	159.39**	206.91**	1.28	36.19
	E_2	9.15	62.47**	46.35	66.07**	65.49	34.43
	E_3	128.91*	161.46**	286.09**	131.85**	200.60*	33.78

Note: Figure in the parenthesis indicates the degree of freedom

Table 2: Analysis of variance for different characters pooled over environments in wheat

Source of variation	urce of variation d.f. CHARACTERS							
		Days to heading	Grain filling period	Days to maturity	Plant height (cm)	Number of effective tillers per plant	Length of main spike (cm)	Peduncle length of main spike (cm)
Replication within	6	24.84**	72.68**	38.87**	88.76**	2.23**	4.25**	97.47**
environments								
Environments (E)	2	5536.69**	1725.67**	2827.03**	805.79**	256.65**	49.47**	1639.48**
Genotypes (G)	44	46.22**	96.46**	38.08**	129.51**	2.11**	5.35**	24.46**
Parents (P)	8	54.61**	76.37**	60.75**	42.89*	1.43*	6.09**	28.59**
Hybrids (H)	35	43.92**	103.68**	32.48**	126.58**	2.14**	4.99**	23.29**
P vs. H	1	60.09**	4.46	52.63*	925.13**	6.30**	11.81**	32.36
GxE	88	45.88**	30.02*	25.02**	68.44**	1.62**	1.82**	7.00
PxE	16	42.87**	17.83	19.03	22.90	0.93	1.22	6.18
НхЕ	70	47.61**	33.57**	26.64**	72.33**	1.78**	1.89**	7.14
P vs. H x E	2	9.27	3.38	16.56	296.62**	1.73	3.97*	8.75
Environments pooled error	264	5.08	21.30	11.65	17.75	0.65	0.94	10.61

Table 2: Contd...

Source of	d.f.			C	haracters			
variation		Number of spikelets per main spike	Number of grains per main spike	Grain weight per main spike (g)	1000 grain weight (g)	Grain yield per plant (g)	Biological yield per plant (g)	Harvest index (%)
Replication within environments	6	29.52**	48.70*	8.31*	21.98**	8.26**	176.93**	89.87*
Environments (E)	2	224.82**	11551.29**	2944.34**	482.76**	227.33**	3537.25**	616.76**
Genotypes (G)	44	7.97**	52.57**	21.63**	66.55**	20.46**	41.23**	130.80**
Parents (P)	8	4.62	31.93	15.62**	36.92**	14.41**	39.14*	139.89**
Hybrids (H)	35	8.80**	58.76**	22.38**	65.32**	21.73**	40.07**	132.23**
P vs. H	1	5.68	0.81	43.41**	346.84**	24.31**	98.49*	8.14
G x E	88	2.73	26.33**	8.73**	26.65**	9.82**	60.44**	143.36**
РхЕ	16	2.42	23.75	7.27**	26.27**	8.17**	67.10**	175.97**
НхЕ	70	2.87	26.52**	9.15**	27.44**	9.12**	59.87**	136.30**
P vs. H x E	2	0.20	40.22	5.61	1.68	47.29**	27.28	129.62*
Environments pooled error	264	2.96	17.05	3.49	2.67	2.86	17.57	34.80

^{*} and ** significant at 5 and 1 per cent levels of significance, respectively

Table 3: Range of heterosis for 14 quantitative traits in three different environments in bread wheat

Characters	Range of heterosis (%)							
	Het	erobeltosis (BP)	Sta	ndard check	(SC)		
	$\mathbf{E_1}$	$\mathbf{E_2}$	$\mathbf{E_3}$	$\mathbf{E_1}$	$\mathbf{E_2}$	$\mathbf{E_3}$		
Days to heading	-24.99 to	-8.39 to	-17.34 to	-27.35to	-12.73 to	-16.79 to		
	32.37	11.32	28.19	18.75	9.09	22.15		
Days to maturity	-4.33 to	-7.12 to	-12.90 to	-8.53 to	-10.06 to	-11.22 to		
	9.61	8.75	4.67	3.28	6.10	1.61		
Grain filling period	-21.86 to	-37.66 o	-34.53 to	-16.96to	-27.81 o	-31.58 to		
	15.23	24.39	13.11	16.98	18.81	9.79		
Plant height (cm)	-14.11 to	-9.94 to	-10.38 to	-16.69 o	-23.91to	-7.54 to		
	33.78	34.83	40.10	19.85	12.05	39.35		
Number of effective	-14.78 to	-12.68 to	-27.01 to	-19.49 o	-8.83 to	-21.61 to		
tillers per plant	19.69	9.73	16.51	14.40	8.83	21.72		
Length of main	-28.76 to	-12.16to	-27.96 to	-17.05to	-12.4 to	-22.84 to		
spike (cm)	30.27	23.09	43.59	20.45	12.83	21.37		
Peduncle length of	-24.48 to	-16.69to	-24.55 to	-17.01to	-14.16to	-20.57 to		
main spike (cm)	18.72	17.11	13.92	22.15	14.59	14.91		
Number of spikelts	-13.18 to	-27.83to	-16.12 to	-13.18 to	-26.09to	-9.80 to		
per spike	12.98	22.17	14.25	9.94	15.92	11.41		
Number of grains	-21.92 to	-9.55 to	-30.16 to	0.00 to	-11.25 to	-22.88 to		
per spike	12.08	9.15	29.38	43.69	8.19	19.17		
Grain weight per	-35.47 to	-34.98to	-29.53 to	-13.93to	-31.05to	-23.81 to		
spike	10.42	12.97	29.93	36.07	10.89	22.02		
1000-grain weight	-25.84 to	-33.45to	-33.74 to	-16.58to	-26.68 to	-26.97 to		
(g)	6.27	12.56	13.96	13.81	6.91	15.63		
Biological yield per	-32.93 to	-13.96to	-21.90 to	-21.88to	-9.48 to	-21.39 to		
plant (g)	32.66	16.42	48.96	33.50	14.17	23.60		
Grain yield per	-31.30 to	-36.0 to	-21.75 to	-18.22to	-34.64to	-27.13 to		
plant (g)	24.30	35.96	70.87	22.14	24.31	20.18		
Harvest index (%)	-48.43 to	-35.50to	-45.00 to	-38.46to	-30.9 to	-37.94 to		
	35.78	19.95	70.80	53.00	19.42	38.26		

Table 4:Estimates of per cent heterosis over better parent and standard check in individual and pooled over environments for grain yield per plant (g) in bread wheat

2. NW 5013 × PHSC 5 −23.49** −8.69 −5.94 −0.59 −18.71* −24.55** −15.23 −11.33 3. NW 5013×CW 2010−287 −21.43** −17.80 −8.74 −6.75 −21.75* −22.95** −15.68 −16.0 4. NW 5013 × QLD 65 −13.80 −9.81 6.05 16.27* 29.48** 20.18* 3.78 9.8 6. NW 5013 × QLD 46 −3.75 0.70 5.34 7.63 −1.91 −7.60 0.63 0.2 8. NW 5013 × GW 496 −6.43 −2.10 −36.03** −34.64** −8.39 −14.97 −17.82* −18.19 9. DW 90 × PHSC5 −27.60** −13.59 −18.89* −14.27 −18.88* −20.17** −21.80* +18.19 10. DW 90 × GW 200-287 −9.14 6.31 35.96** 12.33 23.66** 20.17** −21.81 −1.03.09** −14.27* −18.88* −26.17** −18.09** −24.41** −11.82** 11.	Sr.	Hybrid	\mathbf{E}_1		F	22	F	\mathbb{E}_3	Poo	led
2. NW 5013 × PHSC 5 −23.49** −8.69 −5.94 −0.59 −18.71* −24.55** −15.23 −11.33 3. NW 5013×CW 2010−287 −21.43** −17.80 −8.74 −6.75 −21.75* −22.95** −15.68 −16.0 4. NW 5013 × QLD 65 −13.80 −9.81 6.05 16.27* 29.48** 20.18* 3.78 9.8 6. NW 5013 × QLD 46 −3.75 0.70 5.34 7.63 −1.91 −7.60 0.63 0.2 8. NW 5013 × GW 496 −6.43 −2.10 −36.03** −34.64** −8.39 −14.97 −17.82* −18.19 9. DW 90 × PHSC5 −27.60** −13.59 −18.89* −14.27 −18.88* −20.17** −21.80* +18.19 10. DW 90 × GW 200-287 −9.14 6.31 35.96** 12.33 23.66** 20.17** −21.81 −1.03.09** −14.27* −18.88* −26.17** −18.09** −24.41** −11.82** 11.	No.		BP	SH	BP	SH	BP	SH	BP	SH
3. NW 5013×GW 2010-287 -21.43** -17.80 -8.74 -6.75 -21.75* -23.95** -15.68 -16.08 4. NW 5013× BW 5872 16.74 22.14* -2.96 2.17 -11.42 -17.78* 1.57 1.57 1.57 1.57 1.1 2.01.8** 20.18** 3.78 9.8 6. NW 5013× QLD 46 -3.75 0.70 5.34 7.63 -1.91 -7.60 0.63 0.2 7. NW 5013× GW 496 -6.63 -2.10 -15.27 -7.81 9.87 1.98 -5.33 5.53 9. DW 90 × PHSC 5 -27.60** -13.59 +18.89* -14.27 +18.88* -26.17** -21.80* +18.19 10. DW 90 × GW 2010-287 -9.14 6.31 35.96** 12.33 23.66** 20.18** 25.48** 13.1 11. DW 90 × GW 2010-65 -2.81 -10.00 -9.32 -0.59 1.39 18.56* 16.95** 24.41** 11.8 12. DW 9	1.	NW 5013 × DW 90	8.04	13.03	1.55	3.76	13.55	5.39	7.47	7.06
4. NW 5013 × BW 5872 16.74 22.14* -2.96 2.17 -11.42 -17.78* 1.57 1.1 5. NW 5013 × QLD 65 -13.80 -9.81 6.05 16.27* 29.48** 20.18* 3.78 9.8 3.78 9.8 3.78 3.8 3.78 3.6 0.2 7. NW 5013 × QLD 65 -3.75 0.70 5.34 7.63 1.91 -7.60 0.63 0.2 8. NW 5013 × GW 496 -6.43 -2.10 -36.03** -34.64** -8.39 14.97 -17.82** 18.15* 9. DW 90 × PHSC 5 -27.60** -13.59 -18.88* -14.27 -18.88* -26.17** -21.80** 18.11* 10. DW 90 × GW 2D10-287 9.14 6.31 35.96** 12.33 23.66** 20.21** 13.21 10.90** 23.66** 20.21** 13.1 11.80** 20.58** 10.80** 70.87** 16.95** 24.41** 11.8 11.8 15.1 10.90** 9.93**	2.	NW 5013 × PHSC 5	-23.49**	-8.69	-5.94	-0.59	-18.71*	-24.55**	-15.23	-11.31
5. NW 5013 × QLD 65 -13.80 -9.81 6.05 16.27* 29.48** 20.18* 3.78 9.8 6. NW 5013 × QLD 46 -3.75 0.70 5.34 7.63 1-191 7.60 0.63 0.0 7. NW 5013 × Raj 4238 -16.85* -12.10 -36.03** -34.64** -8.39 -14.97 -17.82* -18.11* 8. NW 5013 × GW 496 -6.43 -2.10 -36.03** -34.64** -8.39 -14.97 -17.82* -18.11* 9. DW 90 × BUS 55* -27.60** -13.59 118.89* -14.27 -18.88* 26.17** -21.80* 18.11* 10. DW 90 × GW 2010-287 9.14 6.31 35.96*** -12.33* 23.66*** 20.18** 25.48*** 118.19* 11. DW 90 × GW 2010-287 9.12 -3.29 13.39* 19.38*** 70.87*** 16.61** 11.56** 10.58** 118.19** 12. DW 90 × GW 20.04 24.30*** -18.01** -13.29**	3.	NW 5013×GW 2010-287	-21.43**	-17.80	-8.74	-6.75	-21.75*	-23.95**	-15.68	-16.00
6. NW 5013 × QLD 46	4.	NW 5013 × BW 5872	16.74	22.14*	-2.96	2.17	-11.42	-17.78*	1.57	1.19
7. NW 5013 × Raj 4238 -16.85* -12.19 -15.27 -7.81 9.87 1.98 -5.33 -5.6 8. NW 5013 × GW 496 -6.43 -2.10 -36.03** -34.64** -8.39 -14.97 -17.82* -18.15 9. DW 90 × PHSC 5 -27.60** -13.59 -18.89* -14.27 -18.88* -26.17** -21.80* -18.15 10. DW 90 × GW 2010-287 9.14 6.31 35.96** 12.33 23.66** 20.18* 25.48** 118.91 11. DW 90 × BW 5872 0.22 -3.29 13.39 19.38** 70.87** 16.95* 24.41* 11.8 12. DW 90 × QLD 66 -2.81 -10.30 -9.32 -0.59 13.91 -5.39 1.81 -5.1 14. DW 90 × GUD 46 -18.75** -18.01 -7.73 -6.81 -6.10 -11.56 -10.58 -11.8 15. DW 90 × GW 496 24.30** 14.72 1.98 2.58 30.40** -1.38 <td>5.</td> <td>NW 5013 × QLD 65</td> <td>-13.80</td> <td>-9.81</td> <td>6.05</td> <td>16.27*</td> <td>29.48**</td> <td>20.18*</td> <td>3.78</td> <td>9.87</td>	5.	NW 5013 × QLD 65	-13.80	-9.81	6.05	16.27*	29.48**	20.18*	3.78	9.87
8. NW 5013 × GW 496 -6.43 -2.10 -36.03** -34.64** -8.39 -14.97 -17.82* -18.19 9. DW 90 × PHSC 5 -27.60*** -13.59 -18.89* -14.27 -18.88* -26.17** -21.80* -18.19 10. DW 90 × GW 2010-287 9.14 6.31 35.96** 12.33 23.66** 20.18** 25.48** 13.2 11. DW 90 × QLD 65 -2.81 -10.30 -9.32 -0.59 13.91 -5.39 1.81 -5.1 13. DW 90 × QLD 65 -2.81 -10.30 -9.32 -0.59 13.91 -5.39 1.81 -5.1 14. DW 90 × QLD 65 -2.81 -10.30 -9.32 -0.59 13.91 -5.39 1.81 -5.1 14. DW 90 × QLD 65 -2.81 -10.30 -7.73 -6.61 -11.56 -10.58 -11.8 15. DW 90 × GW 496 24.30*** 14.22 1.98 2.58 30.40*** -13.8 11.77 <td< td=""><td>6.</td><td>NW 5013 × QLD 46</td><td>-3.75</td><td>0.70</td><td>5.34</td><td>7.63</td><td>-1.91</td><td>-7.60</td><td>0.63</td><td>0.25</td></td<>	6.	NW 5013 × QLD 46	-3.75	0.70	5.34	7.63	-1.91	-7.60	0.63	0.25
DW 90 × PHSC 5	7.	NW 5013 × Raj 4238	-16.85*	-12.19	-15.27	-7.81	9.87	1.98	-5.33	-5.69
10. DW 90 × GW 2010-287 9.14 6.31 35.96** 12.33 23.66** 20.18* 25.48** 13.2 11. DW 90 × BW 5872 0.22 -3.29 13.39 19.38** 70.87** 16.95* 24.41* 11.8 12. DW 90 × QLD 65 -2.81 -10.30 -9.32 -0.59 13.91 -5.39 1.81 -5.1 13. DW 90 × QLD 46 -18.75** -18.01 -7.73 -6.81 -6.10 -11.56 -10.58 -11.8 14. DW 90 × Raj 4238 -3.98 1.40 -13.28 -5.64 1.72 -18.56* -6.07 -8.0 15. DW 90 × GW 496 24.30** 14.72 1.98 2.58 30.40** -1.38 17.77 4.8 16. PHSC 5 × GW 2010-287 -7.40 10.51 17.61* 24.31** 21.38* 17.96* 12.78 18.0 17. PHSC 5 × GW 2010-287 -7.40 10.51 17.61* 24.31** 21.38* 17.96* 12.78 18.0 18. PHSC 5 × QLD 65 -6.46 11.63 -15.00 -6.81 -4.61 -13.17 -7.83 -3.5 19. PHSC 5 × QLD 46 -26.19** -11.91 -7.06 -1.76 13.99 7.37 -5.97 -1.6 20. PHSC 5 × Raj 4238 -31.30** -18.01 -22.99 -16.21* -18.88* -26.17** -23.72** -20.12 21. PHSC 5 × GW 496 -7.40 10.51 -6.28 -0.94 -19.93* -27.13** -10.81 -6.6 22. GW 2010-287×QLD 65 8.13 5.33 4.98 15.09 13.56 10.36 18.65* 10.5 24. GW 2010-287×QLD 65 8.13 5.33 4.98 15.09 13.56 10.36 18.65* 10.5 24. GW 2010-287×QLD 65 8.13 5.33 4.98 15.09 13.56 10.36 18.65* 10.5 25. GW 2010-287×QLD 65 8.13 5.33 4.98 15.09 13.56 10.36 18.65* 10.5 26. GW 2010-287×QLD 65 11.33 7.43 -2.14 7.28 35.76** 12.75 17.24 9.2 27. BW 5872 × QLD 46 -5.07 -4.20 -1.67 3.52 0.89 -4.97 -0.38 -1.7 29. BW 5872 × QLD 66 -1.33 7.43 -2.14 7.28 35.76** 12.75 17.24 9.2 28. BW 5872 × QHD 66 -5.07 -4.20 -1.67 3.52 0.89 -4.97 -0.38 -1.7 29. BW 5872 × QH96 -3.20 -6.59 -20.80** -16.62* 34.60** 1.80 -2.14 -0.0 -2.3 30. QLD 65 × Raj 4238 -1.34 -8.90 -1.430 -6.05 15.36 -1.80 -1.34 -6.2	8.	NW 5013 × GW 496	-6.43	-2.10	-36.03**	-34.64**	-8.39	-14.97	-17.82*	-18.13*
11. DW 90 × BW 5872 0.22 -3.29 13.39 19.38** 70.87** 16.95* 24.41* 11.8 12. DW 90 × QLD 65 -2.81 -10.30 -9.32 -0.59 13.91 -5.39 1.81 -5.1 13. DW 90 × QLD 46 -18.75** -18.01 -7.73 -6.81 -6.10 -11.56 -10.58 -11.8 14. DW 90 × Raj 4238 -3.98 1.40 -13.28 -5.64 1.72 -18.55* -6.07 -8.0 15. DW 90 × GW 496 24.30** 14.72 1.98 2.58 30.40** -1.38 17.77 4.8 16. PHSC 5 × GW 2010-287 -7.40 10.51 17.61* 24.31** 21.38* 17.96* 12.78 18.0 17. PHSC 5 × BW 5872 -26.60** -12.40 -12.22 -7.22 19.28* 8.56 -7.53 -3.2 18. PHSC 5 × QLD 65 -6.46 11.63 -15.00 -6.81 -4.61 -13.17 -7.93 -3.5 19. PHSC 5 × QLD 46 -26.19** -11.91 -7.06 -1.76 13.99 7.37 -5.97 -1.6 20. PHSC 5 × Raj 4238 -31.30** -18.01 -22.99 -16.21* -18.88* -26.17** -23.72** -20.19 21. PHSC 5 × GW 496 -7.40 10.51 -6.28 -0.94 -19.93* -27.13** -10.81 -6.6 22. GW 2010-287 × BW 5872 6.26 3.50 8.92 14.68 9.49 6.41 20.22* 8.5 23. GW 2010-287 × QLD 65 8.13 5.33 4.98 15.09 13.56 10.36 18.65* 10.56 24. GW 2010-287 × Ruj 4238 -13.74 -8.90 -6.80 1.41 0.00 -2.81 -1.02 -3.1 26. GW 2010-287 × GW 496 11.51 8.62 -23.35** -22.90** -7.58 -10.18 0.69 -9.1 27. BW 5872 × QLD 65 11.33 7.43 -2.14 7.28 35.76** 12.75 17.24 9.2 28. BW 5872 × QLD 65 11.33 7.43 -2.14 7.28 35.76** 12.75 17.24 9.2 29. BW 5872 × GW 496 -3.20 -6.59 -20.80** -16.62* 34.60** 1.80 3.20 -7.2 30. BW 5872 × GW 496 -3.20 -6.59 -20.80** -16.62* 34.60** 1.80 3.20 -7.2 31. QLD 65 × Raj 4238 -13.74 -8.90 -14.30 -6.05 5.36 -4.19 -4.21 -6.2 32. QLD 65 × Raj 4238 -3.13 -3.20 -6.59 -20.80** -16.62* 34.60** 1.80 -4.21 -6.2 33. QLD 65 × GW 496 -3.20 -6.59 -20.80** -15.03* 8.15	9.	DW 90 × PHSC 5	-27.60**	-13.59	-18.89*	-14.27	-18.88*	-26.17**	-21.80*	-18.19*
12. DW 90 × QLD 65 -2.81 -10.30 -9.32 -0.59 13.91 -5.39 1.81 -5.11 13. DW 90 × QLD 46 -18.75** -18.01 -7.73 -6.81 -6.10 -11.56 -10.58 -11.8 14. DW 90 × Raj 4238 -3.98 1.40 -13.28 -5.64 1.72 -18.56* -6.07 -8.0 15. DW 90 × GW 496 24.30** 14.72 1.98 2.58 30.40** -1.38 17.77 4.8 16. PHSC 5 × GW 2010-287 -7.40 10.51 17.61* 24.31** 21.38* 17.96* 12.78 18.00 17. PHSC 5 × BW 5872 -26.60** -12.40 -12.22 -7.22 19.28* 8.56 -7.53 -3.2 18. PHSC 5 × QLD 65 -6.46 11.63 -15.00 -6.81 -4.61 -13.17 -7.83 -3.5 19. PHSC 5 × QLD 46 -26.19** -11.91 -7.06 -1.76 13.99 7.37 -5.97 -1.6 20. PHSC 5 × Raj 4238 -31.30** -18.01 -22.99 -16.21* -18.88* -26.17** -23.72** -20.1* 21. PHSC 5 × GW 496 -7.40 10.51 -6.28 -0.94 -19.93* -27.13** -10.81 -6.62 22. GW 2010-287 × QLD 65 8.13 5.33 4.98 15.09 13.56 10.36 18.65* 10.5 23. GW 2010-287 × QLD 65 8.13 5.33 4.98 15.09 13.56 10.36 18.65* 10.5 24. GW 2010-287 × QLD 66 6.25 7.22 -16.28 -15.44 11.09 7.96 0.82 -0.5 25. GW 2010-287 × QLD 66 6.25 7.22 -16.28 -15.44 11.09 7.96 0.82 -0.5 26. GW 2010-287 × QLD 66 11.51 8.62 -23.33*** -22.99** -7.58 -10.18 0.69 -9.1 27. BW 5872 × QLD 65 11.33 7.43 -2.14 7.28 35.76** 12.75 17.24 9.2 28. BW 5872 × QLD 66 -5.07 -4.20 -1.67 3.52 0.89 -4.97 -0.38 -1.7 29. BW 5872 × GW 496 -3.20 -6.59 -20.80** -16.62* 34.60** 1.80 2.41 1.0 30. BU 5872 × GW 496 -3.20 -6.59 -20.80** -16.62* 34.60** 1.80 2.41 1.0 31. QLD 65 × Raj 4238 -13.74 -8.90 -14.30 -6.05 15.36 -4.19 -4.21 -6.2 33. QLD 65 × Raj 4238 -13.74 -8.90 -14.30 -6.05 15.36 -4.19 -4.21 -6.2 33. QLD 65 × Raj 4238 -1.374 -8.90 -14.30 -6.05 15.36 -4.19 -4.	10.	DW 90 × GW 2010-287	9.14	6.31	35.96**	12.33	23.66**	20.18*	25.48**	13.25
13. DW 90 × QLD 46 -18.75** -18.01 -7.73 -6.81 -6.10 -11.56 -10.58 -11.8 14. DW 90 × Raj 4238 -3.98 1.40 -13.28 -5.64 1.72 -18.56* -6.07 -8.0 15. DW 90 × GW 496 24.30** 14.72 1.98 2.58 30.40** -1.38 17.77 4.8 16. PHSC 5 × GW 2010-287 -7.40 10.51 17.61* 24.31** 21.38* 17.96* 12.78 18.00 17. PHSC 5 × BW 5872 -26.60** -12.40 -12.22 -7.22 19.28* 8.56 -7.53 -3.2 18. PHSC 5 × QLD 65 -6.46 11.63 -15.00 -6.81 -4.61 -13.17 -7.83 -3.5 19. PHSC 5 × QLD 46 -26.19** -11.91 -7.06 -1.76 13.99 7.37 -5.97 -1.6 20. PHSC 5 × GM 496 -7.40 10.51 -6.28 -0.94 -19.93* -27.13** -10.81 -6.6 22. GW 2010-287×BW 5872 6.26 3.50 8.92 14.68 9.49 6.41 20.22* 8.5 23. GW 2010-287×QLD 65 8.13 5.33 4.98 15.09 13.56 10.36 18.65* 10.5 24. GW 2010-287×GM 496 -7.22 -16.28 -15.44 11.09 7.96 0.82 -0.5 25. GW 2010-287×GW 496 -13.74 -8.90 -6.80 1.41 0.00 -2.81 -1.02 -3.1 26. GW 2010-287×Raj 4238 -13.74 -8.90 -6.80 1.41 0.00 -2.81 -1.02 -3.1 27. BW 5872 × QLD 65 11.33 7.43 -2.14 7.28 35.76** 12.75 17.24 9.2 28. BW 5872 × QLD 66 -5.07 -4.20 -1.67 3.52 0.89 -4.97 -0.38 -1.7 29. BW 5872 × GW 496 -3.20 -6.59 -2.080** -16.62* 34.60** 1.80 3.20 -7.2 30. BW 5872 × GW 496 -3.20 -6.59 -2.080** -16.62* 34.60** 1.80 3.20 -7.2 31. QLD 65 × GW 496 -3.10 -3.10 -3.11	11.	DW 90 × BW 5872	0.22	-3.29	13.39	19.38**	70.87**	16.95*	24.41*	11.81
14. DW 90 × Raj 4238 -3.98 1.40 -13.28 -5.64 1.72 -18.56* -6.07 -8.00 15. DW 90 × GW 496 24.30** 14.72 1.98 2.58 30.40** -1.38 17.77 4.8 16. PHSC 5 × GW 2010-287 -7.40 10.51 17.61* 24.31** 21.38* 17.96* 12.78 18.00 17. PHSC 5 × BW 5872 -26.60** -12.40 -12.22 -7.22 19.28* 8.56 -7.53 -3.2 18. PHSC 5 × QLD 65 -6.46 11.63 -15.00 -6.81 -4.61 -13.17 -7.83 -3.5 19. PHSC 5 × QLD 46 -26.19** -11.91 -7.06 -1.76 13.99 7.37 -5.97 -1.6 20. PHSC 5 × Raj 4238 -31.30** -18.01 -22.99 -16.21* -18.88* -26.17** -23.72** -20.19 21. PHSC 5 × GW 496 -7.40 10.51 -6.28 -0.94 -19.93* -27.13** -10.81 -6.6 22. GW 2010-287×QLD 65 8.13 5.33 4.98 15.09 13.56 10.36 18.65* 10.5 23. GW 2010-287×QLD 65 8.13 5.33 4.98 15.09 13.56 10.36 18.65* 10.5 24. GW 2010-287×QLD 46 6.25 7.22 -16.28 -15.44 11.09 7.96 0.82 -0.5 25. GW 2010-287×QLD 46 6.25 7.22 -16.28 -15.44 11.09 7.96 0.82 -0.5 26. GW 2010-287×QLD 46 6.25 7.22 -16.28 -15.44 11.09 7.96 0.82 -0.5 27. BW 5872 × QLD 65 11.33 7.43 -2.14 7.28 35.76** 12.75 17.24 9.2 28. BW 5872 × QLD 65 11.33 7.43 -2.14 7.28 35.76** 12.75 17.24 9.2 29. BW 5872 × QLD 66 -5.07 -4.20 -1.67 3.52 0.89 -4.97 -0.38 -1.7 29. BW 5872 × GW 496 -3.20 -6.59 -20.80** -16.62* 34.60** 1.80 3.20 -7.2 30. BW 5872 × GW 496 -3.20 -6.59 -20.80** -16.62* 34.60** 1.80 3.20 -7.2 31. QLD 65 × Raj 4238 -13.74 -8.90 -14.30 -6.05 15.36 -4.19 -4.21 -6.2 32. QLD 65 × Raj 4238 -13.74 -8.90 -14.30 -6.05 15.36 -4.19 -4.21 -6.2 33. QLD 65 × GW 496 -3.20 -6.59 -20.80** -15.03* 8.15 -10.18 -1.34 -8.0 34. QLD 46 × Raj 4238 -13.74 -8.90 -14.30 -6.05 15.36 -4.19 -4.21 -6.2 35.	12.	DW 90 × QLD 65	-2.81	-10.30	-9.32	-0.59	13.91	-5.39	1.81	-5.13
15. DW 90 × GW 496 24.30** 14.72 1.98 2.58 30.40** -1.38 17.77 4.88 16. PHSC 5 × GW 2010-287 -7.40 10.51 17.61* 24.31** 21.38* 17.96* 12.78 18.00 17. PHSC 5 × BW 5872 -26.60** -12.40 -12.22 -7.22 19.28* 8.56 -7.53 -3.2 18. PHSC 5 × QLD 65 -6.46 11.63 -15.00 -6.81 -4.61 -13.17 -7.83 -3.5 19. PHSC 5 × QLD 46 -26.19** -11.91 -7.06 -1.76 13.99 7.37 -5.97 -1.6 19. PHSC 5 × Raj 4238 -31.30** -18.01 -22.99 -16.21* -18.88* -26.17** -23.72** -20.11* -22.60 -22.60 -23.35** -22.00** -19.93* -27.13** -10.81 -6.62* -0.94 -19.93* -27.13** -10.81 -6.62* -0.94 -19.93* -27.13** -10.81 -6.62* -0.94 -19.93* -27.13** -10.81 -6.62* -0.94 -19.93* -27.13** -10.81 -6.62* -0.94 -19.93* -27.13** -10.81 -6.62* -0.94 -19.93* -27.13** -10.81 -6.62* -0.94 -19.93* -27.13** -10.81 -6.62* -0.94 -19.93* -27.13** -10.81 -6.62* -0.94 -19.93* -27.13** -10.81 -6.62* -0.94 -19.93* -27.13** -10.81 -6.62* -0.94 -19.93* -27.13** -10.81 -6.62* -0.94 -19.93* -27.13** -10.81 -6.62* -0.94 -19.93* -27.13** -10.81 -6.62* -0.94 -19.93* -27.13** -10.81 -6.62* -0.94 -19.93* -27.13** -10.81 -6.62* -0.94 -19.93* -27.13** -10.81 -6.62* -0.94 -10.93* -1.02* -0.53* -0.53* -1.02* -0.53* -0.53* -1.02* -0.53* -0.53* -1.02* -0.53* -0.53* -1.02* -0.53*	13.	DW 90 × QLD 46	-18.75**	-18.01	-7.73	-6.81	-6.10	-11.56	-10.58	-11.81
16.	14.	DW 90 × Raj 4238	-3.98	1.40	-13.28	-5.64	1.72	-18.56*	-6.07	-8.06
The content of the	15.	DW 90 × GW 496	24.30**	14.72	1.98	2.58	30.40**	-1.38	17.77	4.81
18. PHSC 5 × QLD 65 -6.46 11.63 -15.00 -6.81 -4.61 -13.17 -7.83 -3.5 19. PHSC 5 × QLD 46 -26.19** -11.91 -7.06 -1.76 13.99 7.37 -5.97 -1.6 20. PHSC 5 × Raj 4238 -31.30** -18.01 -22.99 -16.21* -18.88* -26.17** -23.72** -20.19* 21. PHSC 5 × GW 496 -7.40 10.51 -6.28 -0.94 -19.93* -27.13** -10.81 -6.6 22. GW 2010-287 × BW 5872 6.26 3.50 8.92 14.68 9.49 6.41 20.22* 8.5 23. GW 2010-287 × QLD 65 8.13 5.33 4.98 15.09 13.56 10.36 18.65* 10.5 24. GW 2010-287 × QLD 66 6.25 7.22 -16.28 -15.44 11.09 7.96 0.82 -0.5 25. GW 2010-287 × GW 496 11.51 8.62 -23.35*** -22.90*** -7.58 -10.18 0.69 -9.1 27. BW 5872 × QLD 65 113.33 7.43	16.	PHSC 5 × GW 2010-287	-7.40	10.51	17.61*	24.31**	21.38*	17.96*	12.78	18.00*
PHSC 5 × QLD 46	17.	PHSC 5 × BW 5872	-26.60**	-12.40	-12.22	-7.22	19.28*	8.56	-7.53	-3.25
20. PHSC 5 × Raj 4238 -31.30** -18.01 -22.99 -16.21* -18.88* -26.17** -23.72** -20.19* 21. PHSC 5 × GW 496 -7.40 10.51 -6.28 -0.94 -19.93* -27.13** -10.81 -6.6 22. GW 2010-287×BW 5872 6.26 3.50 8.92 14.68 9.49 6.41 20.22* 8.5 23. GW 2010-287×QLD 65 8.13 5.33 4.98 15.09 13.56 10.36 18.65* 10.5 24. GW 2010-287×QLD 46 6.25 7.22 -16.28 -15.44 11.09 7.96 0.82 -0.5 25. GW 2010-287×GW 496 11.51 8.62 -23.35** -22.90** -7.58 -10.18 0.69 -9.1 27. BW 5872 × QLD 65 11.33 7.43 -2.14 7.28 35.76** 12.75 17.24 9.2 28. BW 5872 × QLD 46 -5.07 -4.20 -1.67 3.52 0.89 -4.97 -0.38	18.	PHSC 5 × QLD 65	-6.46	11.63	-15.00	-6.81	-4.61	-13.17	-7.83	-3.56
21. PHSC 5 × GW 496 -7.40 10.51 -6.28 -0.94 -19.93* -27.13** -10.81 -6.66 22. GW 2010-287×BW 5872 6.26 3.50 8.92 14.68 9.49 6.41 20.22* 8.5 23. GW 2010-287×QLD 65 8.13 5.33 4.98 15.09 13.56 10.36 18.65* 10.5 24. GW 2010-287×QLD 46 6.25 7.22 -16.28 -15.44 11.09 7.96 0.82 -0.5 25. GW 2010-287×QLD 46 6.25 7.22 -16.28 -15.44 11.09 7.96 0.82 -0.5 25. GW 2010-287×QW 496 11.51 8.62 -23.35** -22.90** -7.58 -10.18 0.69 -9.1 27. BW 5872 × QLD 65 11.33 7.43 -2.14 7.28 35.76** 12.75 17.24 9.2 28. BW 5872 × QLD 46 -5.07 -4.20 -1.67 3.52 0.89 -4.97 -0.38	19.	PHSC 5 × QLD 46	-26.19**	-11.91	-7.06	-1.76	13.99	7.37	-5.97	-1.63
22. GW 2010-287× BW 5872 6.26 3.50 8.92 14.68 9.49 6.41 20.22* 8.5 23. GW 2010-287×QLD 65 8.13 5.33 4.98 15.09 13.56 10.36 18.65* 10.5 24. GW 2010-287×QLD 46 6.25 7.22 -16.28 -15.44 11.09 7.96 0.82 -0.5 25. GW 2010-287×GW 496 11.51 8.62 -23.35** -22.90** -7.58 -10.18 0.69 -9.1 26. GW 2010-287×GW 496 11.51 8.62 -23.35** -22.90** -7.58 -10.18 0.69 -9.1 27. BW 5872 × QLD 65 11.33 7.43 -2.14 7.28 35.76** 12.75 17.24 9.2 28. BW 5872 × QLD 46 -5.07 -4.20 -1.67 3.52 0.89 -4.97 -0.38 -1.7 29. BW 5872 × Raj 4238 -0.46 5.12 -12.57 -4.87 17.20 -6.17 -0.26	20.	PHSC 5 × Raj 4238		-18.01	-22.99	-16.21*	-18.88*		-23.72**	-20.19*
23. GW 2010-287×QLD 65 8.13 5.33 4.98 15.09 13.56 10.36 18.65* 10.5 24. GW 2010-287×QLD 46 6.25 7.22 -16.28 -15.44 11.09 7.96 0.82 -0.5 25. GW 2010-287×Raj 4238 -13.74 -8.90 -6.80 1.41 0.00 -2.81 -1.02 -3.1 26. GW 2010-287×GW 496 11.51 8.62 -23.35** -22.90** -7.58 -10.18 0.69 -9.1 27. BW 5872 × QLD 65 11.33 7.43 -2.14 7.28 35.76** 12.75 17.24 9.2 28. BW 5872 × QLD 46 -5.07 -4.20 -1.67 3.52 0.89 -4.97 -0.38 -1.7 29. BW 5872 × Raj 4238 -0.46 5.12 -12.57 -4.87 17.20 -6.17 -0.26 -2.3 30. BW 5872 × GW 496 -3.20 -6.59 -20.80** -16.62* 34.60** 1.80 3.24	21.	PHSC 5 × GW 496	-7.40	10.51	-6.28	-0.94	-19.93*	-27.13**	-10.81	-6.69
24. GW 2010-287×QLD 46 6.25 7.22 -16.28 -15.44 11.09 7.96 0.82 -0.5 25. GW 2010-287x Raj 4238 -13.74 -8.90 -6.80 1.41 0.00 -2.81 -1.02 -3.1 26. GW 2010-287×GW 496 11.51 8.62 -23.35** -22.90** -7.58 -10.18 0.69 -9.1 27. BW 5872 × QLD 65 11.33 7.43 -2.14 7.28 35.76** 12.75 17.24 9.2 28. BW 5872 × QLD 46 -5.07 -4.20 -1.67 3.52 0.89 -4.97 -0.38 -1.7 29. BW 5872 × Raj 4238 -0.46 5.12 -12.57 -4.87 17.20 -6.17 -0.26 -2.3 30. BW 5872 × GW 496 -3.20 -6.59 -20.80** -16.62* 34.60** 1.80 3.20 -7.2 31. QLD 65 × QLD 46 -2.78 -1.89 -3.21 6.11 4.26 -1.80 2.41 <	22.	GW 2010-287× BW 5872	6.26	3.50	8.92	14.68	9.49	6.41	20.22*	8.50
25. GW 2010-287x Raj 4238 -13.74 -8.90 -6.80 1.41 0.00 -2.81 -1.02 -3.1 26. GW 2010-287×GW 496 11.51 8.62 -23.35** -22.90** -7.58 -10.18 0.69 -9.1 27. BW 5872 × QLD 65 11.33 7.43 -2.14 7.28 35.76** 12.75 17.24 9.2 28. BW 5872 × QLD 46 -5.07 -4.20 -1.67 3.52 0.89 -4.97 -0.38 -1.7 29. BW 5872 × Raj 4238 -0.46 5.12 -12.57 -4.87 17.20 -6.17 -0.26 -2.3 30. BW 5872 × GW 496 -3.20 -6.59 -20.80** -16.62* 34.60** 1.80 3.20 -7.2 31. QLD 65 × QLD 46 -2.78 -1.89 -3.21 6.11 4.26 -1.80 2.41 1.0 32. QLD 65 × Raj 4238 -13.74 -8.90 -14.30 -6.05 15.36 -4.19 -4.21	23.	GW 2010-287×QLD 65	8.13	5.33	4.98	15.09	13.56	10.36	18.65*	10.56
26. GW 2010-287×GW 496 11.51 8.62 -23.35** -22.90** -7.58 -10.18 0.69 -9.1 27. BW 5872 × QLD 65 11.33 7.43 -2.14 7.28 35.76** 12.75 17.24 9.2 28. BW 5872 × QLD 46 -5.07 -4.20 -1.67 3.52 0.89 -4.97 -0.38 -1.7 29. BW 5872 × Raj 4238 -0.46 5.12 -12.57 -4.87 17.20 -6.17 -0.26 -2.3 30. BW 5872 × GW 496 -3.20 -6.59 -20.80** -16.62* 34.60** 1.80 3.20 -7.2 31. QLD 65 × QLD 46 -2.78 -1.89 -3.21 6.11 4.26 -1.80 2.41 1.0 32. QLD 65 × Raj 4238 -13.74 -8.90 -14.30 -6.05 15.36 -4.19 -4.21 -6.2 33. QLD 65 × GW 496 13.11 2.80 -22.50** -15.03* 8.15 -10.18 -1.4.39	24.	GW 2010-287×QLD 46	6.25	7.22	-16.28	-15.44	11.09	7.96	0.82	-0.56
27. BW 5872 × QLD 65 11.33 7.43 -2.14 7.28 35.76** 12.75 17.24 9.2 28. BW 5872 × QLD 46 -5.07 -4.20 -1.67 3.52 0.89 -4.97 -0.38 -1.7 29. BW 5872 × Raj 4238 -0.46 5.12 -12.57 -4.87 17.20 -6.17 -0.26 -2.3 30. BW 5872 × GW 496 -3.20 -6.59 -20.80** -16.62* 34.60** 1.80 3.20 -7.2 31. QLD 65 × QLD 46 -2.78 -1.89 -3.21 6.11 4.26 -1.80 2.41 1.0 32. QLD 65 × Raj 4238 -13.74 -8.90 -14.30 -6.05 15.36 -4.19 -4.21 -6.2 33. QLD 65 × GW 496 13.11 2.80 -22.50** -15.03* 8.15 -10.18 -13.4 -8.0 34. QLD 46 × Raj 4238 -22.56** -18.22 -33.78** -27.95** 1.72 -4.19 -14.39	25.	GW 2010-287x Raj 4238	-13.74	-8.90		1.41	0.00	-2.81	-1.02	-3.13
28. BW 5872 × QLD 46 -5.07 -4.20 -1.67 3.52 0.89 -4.97 -0.38 -1.7 29. BW 5872 × Raj 4238 -0.46 5.12 -12.57 -4.87 17.20 -6.17 -0.26 -2.3 30. BW 5872 × GW 496 -3.20 -6.59 -20.80** -16.62* 34.60** 1.80 3.20 -7.2 31. QLD 65 × QLD 46 -2.78 -1.89 -3.21 6.11 4.26 -1.80 2.41 1.0 32. QLD 65 × Raj 4238 -13.74 -8.90 -14.30 -6.05 15.36 -4.19 -4.21 -6.2 33. QLD 65 × GW 496 13.11 2.80 -22.50** -15.03* 8.15 -10.18 -1.34 -8.0 34. QLD 46 × Raj 4238 -22.56** -18.22 -33.78** -27.95** 1.72 -4.19 -14.39 -15.5 35. QLD 46 × GW 496 6.46 7.43 -28.66** -27.95** -13.10 -18.14* -12.8	26.	GW 2010-287×GW 496	11.51	8.62	-23.35**	-22.90**	-7.58	-10.18	0.69	-9.13
29. BW 5872 × Raj 4238 -0.46 5.12 -12.57 -4.87 17.20 -6.17 -0.26 -2.3 30. BW 5872 × GW 496 -3.20 -6.59 -20.80** -16.62* 34.60** 1.80 3.20 -7.2 31. QLD 65 × QLD 46 -2.78 -1.89 -3.21 6.11 4.26 -1.80 2.41 1.0 32. QLD 65 × Raj 4238 -13.74 -8.90 -14.30 -6.05 15.36 -4.19 -4.21 -6.2 33. QLD 65 × GW 496 13.11 2.80 -22.50** -15.03* 8.15 -10.18 -1.34 -8.0 34. QLD 46 × Raj 4238 -22.56** -18.22 -33.78** -27.95** 1.72 -4.19 -14.39 -15.5 35. QLD 46 × GW 496 6.46 7.43 -28.66** -27.95** -13.10 -18.14* -12.80 -14.0 36. Raj 4238 × GW 496 -17.52* -12.89 1.46 10.39 37.10** 9.76 <td< td=""><td>27.</td><td>BW 5872 × QLD 65</td><td></td><td>7.43</td><td>-2.14</td><td>7.28</td><td>35.76**</td><td>12.75</td><td>17.24</td><td>9.25</td></td<>	27.	BW 5872 × QLD 65		7.43	-2.14	7.28	35.76**	12.75	17.24	9.25
30. BW 5872 × GW 496 -3.20 -6.59 -20.80** -16.62* 34.60** 1.80 3.20 -7.2 31. QLD 65 × QLD 46 -2.78 -1.89 -3.21 6.11 4.26 -1.80 2.41 1.0 32. QLD 65 × Raj 4238 -13.74 -8.90 -14.30 -6.05 15.36 -4.19 -4.21 -6.2 33. QLD 65 × GW 496 13.11 2.80 -22.50** -15.03* 8.15 -10.18 -1.34 -8.0 34. QLD 46 × Raj 4238 -22.56** -18.22 -33.78** -27.95** 1.72 -4.19 -14.39 -15.5 35. QLD 46 × GW 496 6.46 7.43 -28.66** -27.95** -13.10 -18.14* -12.80 -14.0 36. Raj 4238 × GW 496 -17.52* -12.89 1.46 10.39 37.10** 9.76 5.49 3.2 No. of crosses showing significant desirable heterosis 1 1 2 3 10 4 4 1 Range of heterosis -31.30 to 24.30 -26.03 to 24.31 -36.03	28.	BW 5872 × QLD 46	-5.07	-4.20	-1.67	3.52	0.89	-4.97	-0.38	-1.75
31. QLD 65 × QLD 46 -2.78 -1.89 -3.21 6.11 4.26 -1.80 2.41 1.00 32. QLD 65 × Raj 4238 -13.74 -8.90 -14.30 -6.05 15.36 -4.19 -4.21 -6.2 33. QLD 65 × GW 496 13.11 2.80 -22.50** -15.03* 8.15 -10.18 -1.34 -8.0 34. QLD 46 × Raj 4238 -22.56** -18.22 -33.78** -27.95** 1.72 -4.19 -14.39 -15.5 35. QLD 46 × GW 496 6.46 7.43 -28.66** -27.95** -13.10 -18.14* -12.80 -14.0 36. Raj 4238 × GW 496 -17.52* -12.89 1.46 10.39 37.10** 9.76 5.49 3.2 No. of crosses showing significant desirable heterosis 1 1 2 3 10 4 4 1 Range of heterosis -31.30 to 24.30 -18.22 -36.03 to 35.96 -34.64 to 24.31 -21.75 to 27.13 to 27.13 to 23.72 to 23.72 to 23.72 to 23.72 to 23.72 to 24.30 -20.19	29.	BW 5872 × Raj 4238	-0.46	5.12	-12.57	-4.87	17.20	-6.17	-0.26	-2.38
32. QLD 65 × Raj 4238 -13.74 -8.90 -14.30 -6.05 15.36 -4.19 -4.21 -6.2 33. QLD 65 × GW 496 13.11 2.80 -22.50** -15.03* 8.15 -10.18 -1.34 -8.0 34. QLD 46 × Raj 4238 -22.56** -18.22 -33.78** -27.95** 1.72 -4.19 -14.39 -15.5 35. QLD 46 × GW 496 6.46 7.43 -28.66** -27.95** -13.10 -18.14* -12.80 -14.0 36. Raj 4238 × GW 496 -17.52* -12.89 1.46 10.39 37.10** 9.76 5.49 3.2 No. of crosses showing significant desirable heterosis 1 1 2 3 10 4 4 1 Range of heterosis -31.30 to 24.30 -18.22 -36.03 to 35.96 -34.64 to 24.31 -27.13 to 27.13 to 23.72 to 23.72 to 23.72 to 23.72 to 23.72 to 24.31 -27.13 to 27.13 to 27.			-3.20	-6.59	-20.80**	-16.62*	34.60**	1.80	3.20	-7.25
33. QLD 65× GW 496 13.11 2.80 -22.50** -15.03* 8.15 -10.18 -1.34 -8.0 34. QLD 46 × Raj 4238 -22.56** -18.22 -33.78** -27.95** 1.72 -4.19 -14.39 -15.5 35. QLD 46 × GW 496 6.46 7.43 -28.66** -27.95** -13.10 -18.14* -12.80 -14.0 36. Raj 4238 × GW 496 -17.52* -12.89 1.46 10.39 37.10** 9.76 5.49 3.2 No. of crosses showing significant desirable heterosis 1 1 2 3 10 4 4 1 Range of heterosis -31.30 to 24.30 -18.22 -36.03 to 35.96 -34.64 to 24.31 -27.13 to 27.13 to				-1.89				-1.80	2.41	1.00
34. QLD 46 × Raj 4238 -22.56** -18.22 -33.78** -27.95** 1.72 -4.19 -14.39 -15.5 35. QLD 46 × GW 496 6.46 7.43 -28.66** -27.95** -13.10 -18.14* -12.80 -14.0 36. Raj 4238 × GW 496 -17.52* -12.89 1.46 10.39 37.10** 9.76 5.49 3.2 No. of crosses showing significant desirable heterosis 1 1 2 3 10 4 4 1 Range of heterosis -31.30 to 24.30 -18.22 -36.03 to 35.96 -34.64 to 24.31 -21.75 to 70.87 -27.13 to 20.18 -23.72 to 25.48 to 18.0	32.	•	-13.74	-8.90	-14.30	-6.05	15.36	-4.19	-4.21	-6.25
35. QLD 46 × GW 496 6.46 7.43 -28.66** -27.95** -13.10 -18.14* -12.80 -14.0 36. Raj 4238 × GW 496 -17.52* -12.89 1.46 10.39 37.10** 9.76 5.49 3.2 No. of crosses showing significant desirable heterosis Range of heterosis -31.30 to 22.14 35.96 24.31 70.87 20.18 25.48 to 18.0	33.	`		2.80					-1.34	-8.06
36. Raj 4238 × GW 496 -17.52* -12.89 1.46 10.39 37.10** 9.76 5.49 3.2 No. of crosses showing significant desirable heterosis 1 1 2 3 10 4 4 1 Range of heterosis -31.30 to 24.30 -18.22 -36.03 to 24.31 -34.64 to 35.96 -27.13 to 20.18 -23.72 to 20.19 -20.19 24.30 to 22.14 35.96 24.31 70.87 20.18 25.48 to 18.02		- 0								-15.56
No. of crosses showing significant desirable heterosis Range of heterosis -31.30 to -18.22 -36.03 to -34.64 to -21.75 to -27.13 to -23.72 to -20.19 control (24.30) to 22.14 control (35.96) 24.31 control (35.96) 70.87 control (35.96) 24.31 control (35.96) 70.87 c	35.	,		7.43	-28.66**	-27.95**		-18.14*	-12.80	-14.00
significant desirable heterosis -31.30 to -18.22 -36.03 to -34.64 to -21.75 to -27.13 to -23.72 to -20.19 to 24.30 to 22.14 35.96 24.31 70.87 20.18 25.48 to 18.02		•	-17.52*	-12.89					5.49	3.25
Range of heterosis -31.30 to -18.22 -36.03 to -34.64 to -21.75 to -27.13 to -23.72 to -20.19 to 24.30 to 22.14 35.96 24.31 70.87 20.18 25.48 to 18.00			1	1	2	3	10	4	4	1
24.30 to 22.14 35.96 24.31 70.87 20.18 25.48 to 18.0			21.20 /	10.22	26.02	24.64.	21.75	27.12.	22.72 :	20.10
	Kang	e of neterosis								
		S.E. ±								

Table 5: Performance of top ten high yielding hybrids for heterosis over better parent (BP), standard check (GW 366), their SCA effects and component traits showing significant and desirable heterosis over standard check and better parent

ISSN: 2277-9663

Sr. No.	Hybrids	Grain yield per plant (g)		osis over	SCA effects	Components showing significant and desirable heterosis over			
			BP	GW 366		BP	GW 366	BP	GW 366
1.	PHSC 5 × GW 2010-287	18.88	12.78	18.00*	2.93**	-	-	DH, GFP, ET, LS, NSS, NGP, GWS, HI	DH, DM, LS, PLS, NSS, NGP, GWS, TW, BY, HI
2.	DW 90 × GW 2010-287	18.12	25.48**	13.25	2.37**	-	-	ET, LS, PLS, NSS, NGP, BY, HI	DH, DM, ET, LS, PLS, NSS, NGP, GWS, BY, HI
3.	DW 90 × BW 5872	17.89	24.41*	11.81	2.22**	-	1	DH, PH, ET, LS, PLS, NSS, NGP, BY, HI	DH, DM, PH, ET, LS, PLS, NSS, NGP, GWS, BY, HI
4.	GW 2010-287 × QLD 65	17.69	18.65*	10.56	1.29*	LS	DM	DH, ET, PLS, NSS, NGP, BY, HI	DH, ET, LS, PLS, NSS, NGP, GWS, TW, BY, HI
5.	NW 5013 × QLD 65	17.58	3.78	9.87	1.69**	-	1	DM, PH, ET, LS, NSS, NGP, GWS, BY, HI	GFP, DM, PH, ET, LS, PLS, NSS, NGP, GWS, TW, BY, HI
6.	BW 5872 × QLD 65	17.48	17.24	9.25	1.17	1	-	DH, ET, LS, PLS, NGP, TW, BY, HI	DH, DM, ET, LS, PLS, NSS, NGP, GWS, TW, BY, HI
7.	GW 2010-287 × BW 5872	17.36	20.22*	8.50	0.92	-	TW	GFP, ET, LS, PLS, NSS, NGP, GWS, BY	GFP, ET, LS, PLS, NSS, NGP, GWS, BY, HI
8.	NW 5013 × DW 90	17.13	7.47	7.06	1.89**	-	-	DH, DM, PH, ET, LS, PLS, NSS, NGP, BY, HI	NGP, GWS, TW, BY, HI
9.	DW 90 × GW 496	16.77	17.77	4.81	2.17**	-	-	PH, ET, LS, PLS, NSS, NGP, HI	GFP, PH, ET, LS, PLS, NSS, NGP, GWS, BY
10.	Raj 4238 × GW 496	16.52	5.49	3.25	2.09**	-	-	DH, GFP, DM, ET, LS, PLS, NSS, NGP, GWS, BY	DH, DM, PH, ET,

st and stst indicates significant at 5 per cent and 1 per cent levels of significance, respectively

DH= Days to heading, GFP = Grain filling period, DM = Days to maturity, PH = Plant height, ET = Number of effective tillers per plant, LS = length of main spike, PLS = Peduncle length of main spike, NSP = Number of spikelets per main spike, NGP = number of grain per main spike, GWS = grain weight per main spike, TW = 1000 grain weight, BY = Biological yield per plant, HI = Harvest ind

[MS received : March 03, 2018] [MS accepted : March 16, 2018]